CPN de Pharmacie

PREMIERE ANNEE DOCTEUR EN PHARMACIE

Programme de la première année de pharmacie

Module de Biomathématiques-Bio statistiques et Informatique

Volume horaire total: 80 heures

Biomathématiques-bio statistiques : Enseignement théorique : 40h

Travaux dirigés : 20h

Informatique : enseignement théorique et dirigé : 20h

Biomathématiques:

- 1. Les fonctions linéaires, exponentielles, logarithmiques.
 - 1.1. Fonction, puissance, utilisation des grandeurs trigonométriques.
 - 1.2. Application aux sciences expérimentales.
- 2. Notions essentielles de calcul intégral et différentiel.
- 3. Le traitement des courbes expérimentales. Représentation et anamorphoses.
- 4. Progressions.
- 5. Le calcul d'erreur.
- 6. Introduction à la méthode des moindres carrés.

Probabilités et statistiques :

- 1. Définition et propriétés générales.
- 2. Probabilité d'événements simples et composés.
- 3. Lois usuelles de probabilités contenues et discontinues.
- 4. Distribution normale et log normale.
- 5. Introduction aux tests statistiques, paramétriques et non paramétriques.
- 6. Comparaison de deux séries de mesure discrètes ou contenues, appariées ou indépendantes.
- 7. Notion de corrélation de deux séries de mesures.
- 8. Régression linéaire.

Informatique:

1. Initiation à l'informatique :

- 1.1. Qu'est-ce que l'informatique?
- 1.2. Structure d'un ordinateur.
- 1.3. Fonctionnement d'un ordinateur.

2. Notions d'algorithme :

- 2.1. Définition.
- 2.2. Exemples de résolution logique.
- 2.3. Objets et actions élémentaires.
- 2.4. Actions composées et structures de contrôle.
- 2.5. Propriétés d'un algorithmique.
- 2.6. Formalisme algorithmique.

3. Structures de données statiques :

- 3.1. Tableaux.
- 3.2. Matrices.
- 3.3. Enregistrements.
- 3.4. Ensembles.

4. Fonctions et procédures.

5. Langages et programmation.

Enseignement dirigé :

- Exercices d'application.
- Initiation pratique à l'outil informatique.

Module de Chimie générale pharmaceutique

Volume horaire total : 80 heures Enseignement théorique : 60heures

travaux dirigés : 20h

1. Structure de l'atome :

- 1.1. Expériences préliminaires.
- 1.2. Mise en évidence de l'électron :
 - Expérience de Crooks.
 - Expérience de J.J Thompson.
 - Expérience de Milikan.
- 1.3. Mise en évidence du Proton : Expérience de Rutherford.
- 1.4. Mise en évidence de neutron : Expérience de Chadwick.
- 1.5. L'atome selon Rutherford.

2. L'atome en mécanique quantique :

- 2.1. Aspect ondulatoire et corpusculaire de la lumière.
 - Hypothèse de Plank.
 - Effet photoélectrique.
- 2.2. L'atome de Bohr-spectre de l'atome d'hydrogène.

3. L'atome en mécanique ondulatoire :

- 3.1. Onde associée De Broglie.
- 3.2. Principe d'incertitude de Heisenberg.
- 3.3. Equation de Shrôdinger (pas de résolution).
- 3.4. Nombres quantiques.
- 3.5. Structure électronique des atomes poly électronique : Règles de remplissage.

4. Classification périodique des éléments :

- 4.1. Tableau périodique.
- 4.2. Périodicité des propriétés.

5. Les liaisons chimiques intramoléculaires :

- 5.1. Liaison ionique:
 - Propriétés.
 - Les édifices ioniques : Nacl,Cscl.
- 5.2. Liaison covalente:
 - Forme simplifiée –Diagramme de Lewis.
 - Orbitales moléculaires.
 - Géométrie des molécules.
 - Délocalisation résonance, mésomérie.

6. Les liaisons chimiques intermoléculaires :

- 6.1. Définitions.
- 6.2. 1^{er} Principe:
 - Application à l'énergie interne.
 - Thermochimie.
- 6.3. 2^{ème} Principe:
 - Enoncé.
 - Notion d'entropie.
 - Notion d'enthalpie libre.
 - Conditions d'équilibres.

7. Les équilibres chimiques :

- 7.1. Equilibres homogènes.
 - Loi d'action de masse.
 - Loi de Van'thoff.
- 7.2. Equilibres hétérogènes.
- 7.3. Déplacements d'équilibre :Lois de le Chatelier.
- 7.4. Applications biomédicales : Exemple de l'hémoglobine dans la respiration.

8. Equilibre en solutions :

- 8.1. Les pH:
 - Acide fort, base forte.
 - Acide faible, base faible.
 - Solution tampon.
 - Neutralisation.
 - Indicateurs colorés.
- 8.2. Les sels en solution :
 - Solubilité.
 - Produit de solubilité.
- 8.3. Les équilibres d'oxydoréduction :Loi de Nernst.
- 8.4. Applications biomédicales.

9. Eléments de cinétique chimique :

- 9.1. Loi de vitesse de réaction.
- 9.2. Les réactions simples :
 - Ordre 1,2.
 - Applications biomédicales : cinétique sanguine d'un médicament injecté par voie intraveineuse, stabilité des médicaments ...
 - Energie d'activation.
 - Réactions successives : cinétique sanguine d'un médicament pris par voie orale.

Travaux dirigés (20 heures):

— Exercices en rapport avec le cours.

Module de Chimie organique pharmaceutique

Volume horaire total: 90 h

Enseignement théorique : 60heures: Enseignement dirigé et pratique : 30h

- 1. Chimie organique générale :
 - 1.1. Généralités :
 - 1.1.1. Etude de l'atome de carbone et de ses liaisons.
 - 1.1.2. Fonctions et nomenclatures des composés organiques.
 - 1.2. Liaison en chimie organique:
 - 1.2.1. Aspect électronique.
 - 1.2.2. Effets inductifs et mésomères.
 - 1.3. Eléments de stéréochimie statique :
 - 1.3.1. Formules brutes et développées.
 - 1.3.2. Différents types de représentation et analyse conformation elle.
 - 1.3.3. Isomérie
 - 1.3.4. Stéréo-isomérie-Diastéréoisomérie.
 - 1.4. Mécanismes réactionnels :
 - 1.4.1. Réactifs et intermédiaires réactionnels.
 - 1.4.2. Réactions : différentes réactions en chimie organique
 - 1.4.3. Règles élémentaires : Markovnikov, Zaïtsev
- 2. Chimie organique descriptive :
 - -Examen des méthodes de préparation et des propriétés des fonctions simples ,en insistant surtout sur l'aspect mécanistique ;
 - Etude de particularités des principaux composés d'usage pharmaceutique.
 - 2.1. Hydrocarbures aliphatiques:
 - 2.1.1. Notions de pétrochimie.
 - 2.1.2. Alcanes, alcènes, alcynes.
 - 2.2. Hydrocarbures aromatiques : cas particulier du Benzène.
 - 2.2.1. Les dérivés halogénés.
 - 2.2.2. Les dérivés organométalliques.
 - 2.2.3. Lesalcools et thiols.
 - 2.2.4. Phénols.
 - 2.2.5. Amines, Amides
 - 2.2.6. Azoïques-Diazoïques.
 - 2.2.7. Amides-ammoniums quaternaires.
 - 2.2.8. Aldéhydes-cétones-quinones.
 - 2.2.9. Acides carboxyliques et dérivés (chlorures d'acides, anhydrides, esters, amides, nitriles).

Travaux dirigés (20 h):

— Travaux pratiques (10 h):

Travaux Pratiques

Analyse fonctionnelle

- 1. Analyse élémentaire
- 2. Dérivés halogénés du méthane
- 3. Alcools
- 4. Phénols
- 5. Amines Alcaloïdes
- 6. Aldéhydes et cétones
- 7. Acides carboxyliques
- 8. Acides alcools acides phénols.

Module de Physique Pharmaceutique

Volume horaire total : 50 h Enseignement théorique : 30H Enseignement pratique et dirigé : 20

II-Optique géométrique :

Chapitre 1 : Optique géométrique

- 1-Introduction
- 2-Définitions et terminologie
- 3- les lois générales de l'optique géométrique
 - Les hypothèses de Snell-Descartes
 - Le principe de Fermat
 - Le stigmatisme
 - La nature de l'objet et de l'image

Chapitre 2: La réflexion

- 1-Réflexion sur un miroir plan
- 2-Réflexion sur un miroir sphérique

Chapitre 3: La réfraction

- 1- Réfraction sur un dioptre plan
- 2- Réfraction sur une lame à faces parallèles et relèvement apparent
- 3- Réfraction à travers un prisme, étude de la déviation
- 4- Réfraction sur un dioptre sphérique : loi de conjugaison, les foyers, le grandissement

Chapitre 4-: les lentilles

- 1-L'hypothèse des lentilles minces
- 2-Représentation des lentilles
- 3-Construction de l'image à travers une lentille
- 4-Théorème des lentilles accolées
- 5-Les défauts des lentilles

Chapitre 5-: La vision

- 1- Introduction, œil réduit
- 2- Les anomalies de la vision et leur correction
 - La myopie
 - L'hypermétropie
 - La presbytie
 - L'astigmatisme
 - Le pouvoir séparateur de l'œil

Chapitre 6: Les instruments d'optique

- 1- Introduction
- 2- La loupe
 - Introduction
 - Mise au point
 - Puissance
 - Puissance intrinsèque
 - Grossissement

- Grossissement commercial
- Limite d'utilisation de la loupe

3-Le microscope

- Introduction
- La puissance
- Puissance nominale
- Grossissement
- Grossissement commercial
- Qualité de l'image, phénomène de la diffraction

III-Optique physique

Chapitre 1 : Généralités sur les radiations électromagnétiques

- 1- Introduction
- 2- Formalisme mathématique

Chapitre 2-: les interférences lumineuses

- 1- Interférences de deux sources synchrones
- 2- L'expérience des trous d' Young

Chapitre 3- Introduction à la diffraction

- 1- Introduction
- 2- Diffraction par une fente étroite
- 3- Diffraction par deux fentes
- 4- Notion sur les réseaux

IV-Electricité

Chapitre 1 : Electrisation et loi de Coulomb

1-Différents modes d'électrisation :

- Par frottement
- Par contact
- Par influence
- Par pyroélectricité
- Par piézo-électricité

2-Loi de Coulomb

Chapitre 2 : Champ électrostatique, potentiel et flux

- 1- Définition du champ électrique
- 2- Champ produit par une charge isolée, les lignes de champ
- 3- Champ produit par un ensemble de charges
- 4- Champ produit par une distribution linéique uniforme de charges
- 5- Champ produit par une distribution superficielle de charges
- 6- Champ produit par une distribution volumique de charges
- 7- Travail électrique pour déplacer une charge électrique
- 8- Potentiel électrique
 - Relation entre potentiel électrique et champ électrique
 - Potentiel électrique d'une charge ponctuelle
 - Les surfaces équipotentielles
- 9- Le flux du champ électrique
 - Le flux dû à une charge isolée
 - Cas particuliers
 - Théorème de Gauss

Travaux dirigés (20h)

Exercices en rapport avec les cours

Module de Biologie Végétale

Volume horaire total : 60 h Enseignement théorique : 40h

Travaux pratiques: 20h

- I- Présentation du monde végétale
- II- Organographie des angiospermes
 - 1- Morphologie de l'appareil végétatif (racine, tige, feuille)
 - 2- Morphologie de l'appareil reproducteur (inflorescence, fleur)
- III- Reproduction des angiospermes
 - 1- Cycle de reproduction sexuée
 - 2- Fruits et graines

IV-Histologie végétale

- 1- Méristèmes primaires et tissus d'origine primaire
- 2- Méristèmes secondaires tissus d'origine secondaire

V-Anatomie végétale

- 1- Structures primaire et secondaire de la racine
- 2- Structures primaire et secondaire de la tige
- 3- Structure anatomique de la feuille

VI- Biochimie végétale

- 1- Introduction : substances végétales d'intérêt biologique
- 2- Généralités sur le métabolisme végétal
- 3- L'eau dans la plante
- 4- Les sels minéraux
- 5- La photosynthèse
- 6- Les glucides
- 7- Les protides
- 8- Les lipides
- 9- Métabolites secondaires (dérivés azotés, phénols, terpènes)

Travaux pratiques (20h):

- 1- Morphologie de l'appareil végétatif (racine, tige, feuille)
- 2- Morphologie florale
- 3- Fruits et graines
- 4- La cellule végétale
- 5- Tissus de revêtement d'origine primaire
- 6- Parenchymes
- 7- Les tissus de soutien
- 8- Les tissus conducteurs d'origine primaire
- 9- Les tissus d'origine secondaire
- 10- Les tissus sécréteurs
- 11- Anatomie de la racine
- 12- Anatomie de la tige
- 13- Anatomie de la feuille

Module de Biologie

(Cytologie, histologie et embryologie)

Volume horaire total : 120h Enseignement théorique : 80 heures Enseignement pratique et dirigé : 40h

1-Éléments de systématique

1-Les organismes procaryotes :

- -La bactérie.
- -Le virus.

2-Les organismes eucaryotes :

- -Les protozoaires.
- -La paramécie.
- -Les métazoaires.

II-Cytologie

- 1-la Membrane plasmique
- 2-Le Noyau (cycle cellulaire, chromatine, chromosomes)
- 3-le ribosome
- 4-le réticulum endoplasmique
- 5-l'appareil de Golgi
- 6-la mitochondrie
- 7-Le cytosquelette et la matrice extracellulaire.
- 8-Le signal de transduction membranaire.
- 9 -Les réactions de phosphorylation.
- 10- Le cycle cellulaire.
- 11-Les méthodes d'analyse appliquées à la biologie cellulaire.

III-Histologie descriptive

- 1- Le tissu épithélial (de revêtement et glandulaire)
- 2- Le tissu musculaire
- 3- Le tissu conjonctif
- 4- Le tissu sanguin
- 5- Le tissu cartilagineux
- 6- Le tissu osseux
- 7- Le tissu nerveux

IV- Embryologie

Notions fondamentales d'embryologie

- 1- Embryologie humaine:
 - Les appareils génitaux
 - La fécondation
 - 1^{ère} semaine du développement embryonnaire :blastocyte
 - 2^{ème} semaine du développement embryonnaire : prégastrulation
 - 3^{ème} semaine du développement embryonnaire : gastrulation
 - 4^{ème} à la 8 ème semaine du développement embryonnaire :
 Délimitation de l'embryon ; devenir des feuillets ; morphogénèse
 - Placenta diffus et définitif

Travaux pratiques (30 h):

- Les épithéliums (observation de lames histologiques)
- Réalisation d'un frottis sanguins
- Les appareils génitaux (observation de coupes histologiques des gonades)
- Développement embryonnaire humain (utilisation de maquettes)

Travaux dirigés (10h):

- Exercices de systématique
- Cytologie (planches et diapositives)

PHYSIOLOGIE

(2 EME SEMESTRE)

ENSEIGNEMENT THEORIQUE: 40H TRAVAUX PRATIQUES: 10H

1. SYSTEME NERVEUX

Neurone: transmission de l'information.

Transmission synaptique. Système nerveux végétatif Muscle strié squelettique

Bases neurophysiologiques de la sensibilité de la motricité

Sommeil-langage-mémoire

2. APPAREIL DIGESTIF

Phase bucco-œsophagienne de la digestion

Phase gastrique de la digestion.

Phase intestinale de la digestion.

3. APPAREIL URINAIRE

Filtration glomérulaire.

Fonction tubulaire.

Miction

4. APPAREIL CARDIOVASCULAIRE

Cycle cardiaque.

Hémodynamique cardiaque.

Régulation de la circulation.

5. APPAREIL RESPIRATOIRE:

Mécanisme ventilatoire.

Echanges alvéolo-capillaires et transport des gaz .

Régulation de la respiration.

6. SYSTEME ENDOCRINE REPRODUCTION:

Hormone de croissance

Thyroide

Corticosurrénale

Gonades masculines

Gonades féminines

Grossesse – lactation - contraception

7. NUTRITION-METABOLISME:

Ration alimentaire

Les grandes voies métaboliques

Travaux pratiques (10h)

Simulation des grandes fonctions

MODULE D'ANATOMIE

(1 ere semestre)

Enseignement théorique : 30H

Travaux pratique: 10H

A/ Enseignement théorique

Les généralités sur :

- 1. le corps humain
- 2. l'ostéologie
- 3. l'arthrologie
- 4. la myologie
- 5. l'angéologie
- 6. la névrologie7. la cavité cardiaque
- 8. la grande circulation sanguine

La descriptive sur :

- 1. l'arbre trachéo-bronchique et les poumons
- 2. L'appareil digestif : le tube digestif et ses annexes
- 3. L'appareil urinaire : les reins et les conduits excréteurs
- 4. L'appareil génital femelle et male
- 5. Le système nerveux central : morphologie de la moelle épinière et de l'encéphale
- 6. Systématisation du système nerveux : voies motrices et sensitives
- 7. Peau et phanères
- 8. L'œil

B/ Travaux pratiques : les travaux pratiques s'effectuent sur des maquettes.

MODULE HISTOIRE DE LA PHARMACIE

Enseignement théorique: 20h

I- Histoire de la pharmacie (20h)

Introduction à l'histoire de la pharmacie

- 1- La pharmacie durant l'antiquité sumérienne et égyptienne
 - 2-1 la pharmacie en Mésopotamie
 - 2-2 la pharmacie en Egypte ancienne
- 2- L'époque gréco-romaine
 - 3-1 Hippocrate
 - 3-2 Théophraste
 - 3-3 Dioscoride
 - 3-4 Pline l'Ancien
 - 3-5 Galien
- 3- L'école Arabe
 - 4-1 Débuts de l'école pharmaceutique arabe
 - 4-2 Avicenne et le Canon de la médecine
 - 4-3 Abou BakrErrazi (Razès)
 - 4-4 Ibn Zohr (Avenzoar)
 - 4-5 Ibn El Jazzar (Algizar)
 - 4-6 Ibn Rochd (Averroès)
- 4- Les pratiques thérapeutiques du moyen âge
- 5- La pharmacie au XVIè siècle
 - 6-1 Vésale et l'anatomie humaine
 - 6-2 Ambroise Paré et la chirurgie
 - 6-3 Paracelse et l'alchimie
- 6- XVIIè et XVIIIè siècles préludes de la période scientifique
 - 7-1 La circulation sanguine
 - 7-2 L'infiniment petit et la reproduction
 - 7-3 La conduction nerveuse
- 7- La naissance de la pharmacie moderne
 - 8-1 Les apothicaires précurseurs
 - 8-2 L'aube de la chimie minérale
- 8- XIXè siècle : la période scientifique
 - 9-1 Des apothicaires aux pharmaciens
 - 9-2 La purification des principes actifs des plantes médicinales
 - 9-3 Naissance de la chimie organique et de la chimie pharmaceutique
 - 9-4 Naissance de la pharmacologie
 - 9-5 L'école allemande
 - 9-6 Les premières vaccinations
- 9- Grandes découvertes thérapeutiques
 - 10-1 Les médicaments de la douleur (morphiniques, aspirine, paracétamol)
 - 10-2 Les digitaliques
 - 10-3 Les antibiotiques
 - 10-4 Les anticancéreux
- 10- Evolution de la pharmacie industrielle
 - 11-1 Développement de l'industrie pharmaceutique
 - 11-2 Historique des grandes industries pharmaceutiques mondiales
- 11- La pharmacie au XXè siècle
- 12- Histoire de l'enseignement de la pharmacie

- 13- Histoire de la pharmacie hospitalière
- 14- Histoire de la pharmacie en Algérie
 - 15-1 Période arabe
 - 15-2 Période Ottomane
 - 15-3 Période coloniale
 - 15-4 Après l'indépendance
 - 15-5 Histoire de l'enseignement de la pharmacie en Algérie
 - 15-6Grandes figures de l'histoire en Algérie

Langues vivantes

Enseignement théorique : 40H

Travaux pratique : 20H

1 -Amélioration de la langue d'enseignement1/ Terminologie médicale

2/ Etymologie du mot3/ Rédaction et phonétique

4/ Lexique des noms propres